Small solutions of the damped half-linear oscillator with step function coefficients

In this paper we consider the damped half-linear oscillator x 00|x 0 n−1 + c(t)|x 0 n−1 x 0 + a(t)|x| n−1 x = 0, n ∈ R We give a sufficient condition guaranteeing the existence of a small solution, that is a non-trivial solution which tends to 0 as t tends to infinity, in the case when both damping...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Dénes Attila
Székely László
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet, Oszcilláció - differenciálegyenlet
doi:10.14232/ejqtde.2018.1.46

Online Access:http://acta.bibl.u-szeged.hu/58139
Leíró adatok
Tartalmi kivonat:In this paper we consider the damped half-linear oscillator x 00|x 0 n−1 + c(t)|x 0 n−1 x 0 + a(t)|x| n−1 x = 0, n ∈ R We give a sufficient condition guaranteeing the existence of a small solution, that is a non-trivial solution which tends to 0 as t tends to infinity, in the case when both damping and elasticity coefficients are step functions. With our main theorem we not just generalize the corresponding theorem for the linear case n = 1, but we even sharpen Hatvani’s theorem concerning the undamped half-linear differential equation. Keywords: small solution, asymptotic stability, half-linear differential equation, step function coefficients, damping, difference equations.
Terjedelem/Fizikai jellemzők:1-13
ISSN:1417-3875