Long-time behaviour of solutions of delayed-type linear differential equations

This paper investigates the asymptotic behaviour of the solutions of the retarded-type linear differential functional equations with bounded delays x˙(t) = −L(t, xt) when t → ∞. The main results concern the existence of two significant positive and asymptotically different solutions x = ϕ (t), x = ϕ...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Diblík Josef
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - késleltetett, Differenciálegyenlet - lineáris
doi:10.14232/ejqtde.2018.1.47

Online Access:http://acta.bibl.u-szeged.hu/58138
LEADER 01533nas a2200205 i 4500
001 acta58138
005 20210916104248.0
008 190603s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.47  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Diblík Josef 
245 1 0 |a Long-time behaviour of solutions of delayed-type linear differential equations  |h [elektronikus dokumentum] /  |c  Diblík Josef 
260 |c 2018 
300 |a 1-23 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper investigates the asymptotic behaviour of the solutions of the retarded-type linear differential functional equations with bounded delays x˙(t) = −L(t, xt) when t → ∞. The main results concern the existence of two significant positive and asymptotically different solutions x = ϕ (t), x = ϕ ∗∗(t) such that limt→∞ ϕ ∗∗(t)/ϕ (t) = 0. These solutions make it possible to describe the family of all solutions by means of an asymptotic formula. The investigation basis is formed by an auxiliary linear differential functional equation of retarded type y˙(t) = L (t, yt) such that L (t, yt) ≡ 0 for an arbitrary constant initial function yt . A commented survey of the previous results is given with illustrative examples. 
695 |a Differenciálegyenlet - késleltetett, Differenciálegyenlet - lineáris 
856 4 0 |u http://acta.bibl.u-szeged.hu/58138/1/ejqtde_2018_047.pdf  |z Dokumentum-elérés