Multiple solutions of nonlinear elliptic functional differential equations

We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integra...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Simon László
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus
doi:10.14232/ejqtde.2018.1.60

Online Access:http://acta.bibl.u-szeged.hu/58125
LEADER 01407nas a2200205 i 4500
001 acta58125
005 20200729122904.0
008 190530s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.60  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Simon László 
245 1 0 |a Multiple solutions of nonlinear elliptic functional differential equations  |h [elektronikus dokumentum] /  |c  Simon László 
260 |c 2018 
300 |a 1-9 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integral operators applied to u). By using the theory of pseudomonotone operators, one can prove existence of solutions. However, in certain particular cases it is possible to find theorems on the number of solutions. These statements are based on arguments for fixed points of certain real functions and operators, respectively. 
695 |a Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus 
856 4 0 |u http://acta.bibl.u-szeged.hu/58125/1/ejqtde_2018_060.pdf  |z Dokumentum-elérés