Ground state solutions for asymptotically periodic fractional Choquard equations
This paper is dedicated to studying the following fractional Choquard equation (−4) su + V(x)u = �Z RN Q(y)F(u(y)) |x − y| dy Q(x)f(u), u ∈ H s (R N), where s ∈ (0, 1), N ≥ 3, µ ∈ (0, N), V(x) and Q(x) are periodic or asymptotically periodic, and F(t) = R t 0 f(s)ds. By combining the non-Nehari mani...
Elmentve itt :
Szerzők: |
Chen Sitong Tang Xianhua |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Choquard egyenlet |
doi: | 10.14232/ejqtde.2019.1.2 |
Online Access: | http://acta.bibl.u-szeged.hu/58115 |
Hasonló tételek
-
Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity
Szerző: Wen Lixi, et al.
Megjelent: (2019) -
Ground state sign-changing solutions for critical Choquard equations with steep well potential
Szerző: Li Yong-Yong, et al.
Megjelent: (2022) -
Ground state for Choquard equation with doubly critical growth nonlinearity
Szerző: Li Fuyi, et al.
Megjelent: (2019) -
Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent
Szerző: Li Anran, et al.
Megjelent: (2020) -
Infinitely many solutions for nonhomogeneous Choquard equations
Szerző: Wang Tao, et al.
Megjelent: (2019)