Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth
In this paper, we study a class of quasilinear elliptic equations with ΦLaplacian operator and critical growth. Using the symmetric mountain pass theorem and the concentration-compactness principle, we demonstrate that there exists λi > 0 such that our problem admits i pairs of nontrivial weak so...
Elmentve itt :
Szerzők: |
Li Xuewei Jia Gao |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - elliptikus |
doi: | 10.14232/ejqtde.2019.1.6 |
Online Access: | http://acta.bibl.u-szeged.hu/58111 |
Hasonló tételek
-
Solutions for a quasilinear elliptic problem with indefinite nonlinearity with critical growth
Szerző: Costa Gustavo S. A., et al.
Megjelent: (2023) -
New multiple positive solutions for elliptic equations with singularity and critical growth
Szerző: Suo Hong-Min, et al.
Megjelent: (2019) -
Multiple small solutions for Schrödinger equations involving the p-Laplacian and positive quasilinear term
Szerző: Chong Dashuang, et al.
Megjelent: (2020) -
Multiple solutions to a class of inclusion problems with operator involving p(x)-Laplacian
Szerző: Zhou Qingmei
Megjelent: (2013) -
Infinitely many solutions for elliptic problems in RN involving the p(x)-Laplacian
Szerző: Zhou Qing-Mei, et al.
Megjelent: (2015)