Pattern formation of a Schnakenberg-type plant root hair initiation model
This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, incl...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Dinamikus rendszer - differenciálható, Bifurkáció |
doi: | 10.14232/ejqtde.2018.1.88 |
Online Access: | http://acta.bibl.u-szeged.hu/56900 |
LEADER | 01221nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta56900 | ||
005 | 20200729122902.0 | ||
008 | 190125s2018 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2018.1.88 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Li Yanqiu | |
245 | 1 | 0 | |a Pattern formation of a Schnakenberg-type plant root hair initiation model |h [elektronikus dokumentum] / |c Li Yanqiu |
260 | |c 2018 | ||
300 | |a 1-19 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, including Turing patterns, nonconstant spatial patterns or time periodic orbits, is shown. Also, the global dynamics analysis is carried out. | |
695 | |a Dinamikus rendszer - differenciálható, Bifurkáció | ||
700 | 0 | 1 | |a Jiang Juncheng |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/56900/1/ejqtde_2018_088.pdf |z Dokumentum-elérés |