Pattern formation of a Schnakenberg-type plant root hair initiation model

This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, incl...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Li Yanqiu
Jiang Juncheng
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Dinamikus rendszer - differenciálható, Bifurkáció
doi:10.14232/ejqtde.2018.1.88

Online Access:http://acta.bibl.u-szeged.hu/56900
LEADER 01221nas a2200217 i 4500
001 acta56900
005 20200729122902.0
008 190125s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.88  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Li Yanqiu 
245 1 0 |a Pattern formation of a Schnakenberg-type plant root hair initiation model  |h [elektronikus dokumentum] /  |c  Li Yanqiu 
260 |c 2018 
300 |a 1-19 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, including Turing patterns, nonconstant spatial patterns or time periodic orbits, is shown. Also, the global dynamics analysis is carried out. 
695 |a Dinamikus rendszer - differenciálható, Bifurkáció 
700 0 1 |a Jiang Juncheng  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/56900/1/ejqtde_2018_088.pdf  |z Dokumentum-elérés