Predator-prey systems with small predator’s death rate

The goal of our paper is to study canard relaxation oscillations of predator– prey systems with Holling type II of functional response when the death rate of predator is very small and the conversion rate is uniformly positive. This paper is a natural continuation of [C. Li, H. Zhu, 2013; C. Li, 201...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Huzak Renato
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Matematikai modell
doi:10.14232/ejqtde.2018.1.86

Online Access:http://acta.bibl.u-szeged.hu/56898
LEADER 01271nas a2200205 i 4500
001 acta56898
005 20200729122901.0
008 190125s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.86  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Huzak Renato 
245 1 0 |a Predator-prey systems with small predator’s death rate  |h [elektronikus dokumentum] /  |c  Huzak Renato 
260 |c 2018 
300 |a 1-16 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The goal of our paper is to study canard relaxation oscillations of predator– prey systems with Holling type II of functional response when the death rate of predator is very small and the conversion rate is uniformly positive. This paper is a natural continuation of [C. Li, H. Zhu, 2013; C. Li, 2016] where both the death rate and the conversion rate are kept very small. We detect all limit periodic sets that can produce the canard relaxation oscillations after perturbations and study their cyclicity by using singular perturbation theory and the family blow-up. 
695 |a Matematikai modell 
856 4 0 |u http://acta.bibl.u-szeged.hu/56898/1/ejqtde_2018_086.pdf  |z Dokumentum-elérés