Homogeneous Herz spaces with variable exponents and regularity results

In this paper we deal with the second order divergence form operators L with coefficients satisfying the vanishing mean oscillation property and we prove some regularity results for a solution to Lu = div f , where f belongs to homogeneous Herz spaces with variable exponents K˙ α,q(·) p(·)

Elmentve itt :
Bibliográfiai részletek
Szerző: Scapellato Andrea
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - elliptikus
doi:10.14232/ejqtde.2018.1.82

Online Access:http://acta.bibl.u-szeged.hu/56894
LEADER 01036nas a2200205 i 4500
001 acta56894
005 20200729122904.0
008 190125s2018 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2018.1.82  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Scapellato Andrea 
245 1 0 |a Homogeneous Herz spaces with variable exponents and regularity results  |h [elektronikus dokumentum] /  |c  Scapellato Andrea 
260 |c 2018 
300 |a 1-11 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper we deal with the second order divergence form operators L with coefficients satisfying the vanishing mean oscillation property and we prove some regularity results for a solution to Lu = div f , where f belongs to homogeneous Herz spaces with variable exponents K˙ α,q(·) p(·) 
695 |a Differenciálegyenlet - elliptikus 
856 4 0 |u http://acta.bibl.u-szeged.hu/56894/1/ejqtde_2018_082.pdf  |z Dokumentum-elérés