Effect of calcination temperature on the photoactivities of ZnO nanoparticles for degradation of the herbicide clomazone

The introduction of huge amount of organic pollutants such as dyes, pharmaceuticals, pesticides, etc. to the environment has caused many diseases to both aquatic and terrestrial lives due to their carcinogenic, toxic, and mutagenic poisonous nature. As environmental friendly and easy operational tec...

Full description

Saved in:
Bibliographic Details
Main Authors: Despotović Vesna
Šojić Merkulov Daniela
Finčur Nina
Lazarević Marina
Bošković Goran
Panić Sanja
Abramović Biljana
Corporate Author: International Symposium on Analytical and Environmental Problems (24.) (2018) (Szeged)
Format: Book part
Published: 2018
Series:Proceedings of the International Symposium on Analytical and Environmental Problems 24
Kulcsszavak:Kémia - előadáskivonat, Biokémia - előadáskivonat
Online Access:http://acta.bibl.u-szeged.hu/56346
LEADER 02306naa a2200277 i 4500
001 acta56346
005 20220808155024.0
008 190107s2018 hu o 1|| zxx d
020 |a 978-963-306-623-2 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Despotović Vesna 
245 1 0 |a Effect of calcination temperature on the photoactivities of ZnO nanoparticles for degradation of the herbicide clomazone  |h [elektronikus dokumentum] /  |c  Despotović Vesna 
260 |c 2018 
300 |a 275 
490 0 |a Proceedings of the International Symposium on Analytical and Environmental Problems  |v 24 
520 3 |a The introduction of huge amount of organic pollutants such as dyes, pharmaceuticals, pesticides, etc. to the environment has caused many diseases to both aquatic and terrestrial lives due to their carcinogenic, toxic, and mutagenic poisonous nature. As environmental friendly and easy operational techniques, photocatalysis with semiconductors has been regarded as the most advanced and effective technique to replace the traditional methods used for the removal of organic pollutants [1-4]. Calcination temperature plays a key role in the crystallinity and photocatalytic activities of semiconductor photocatalysts [1]. The aim of this work was to investigate removal of the herbicide clomazone from double distilled water in the presence of novel ZnO nanoparticles under simulated sunlight. The ZnO photocatalysts were synthesized by precipitation method from the water and ethanol solutions of the acetate precursor and calcinated at 300–700 °C. The performances of the applied photocatalysts were correlated with their physic chemical properties. The efficiency of elimination the herbicide from double distilled water was monitored by UFLC–DAD technique. 
695 |a Kémia - előadáskivonat, Biokémia - előadáskivonat 
700 0 2 |a Šojić Merkulov Daniela  |e aut 
700 0 2 |a Finčur Nina  |e aut 
700 0 2 |a Lazarević Marina  |e aut 
700 0 2 |a Bošković Goran  |e aut 
700 0 2 |a Panić Sanja  |e aut 
700 0 2 |a Abramović Biljana  |e aut 
710 |a International Symposium on Analytical and Environmental Problems (24.) (2018) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/56346/1/proceedings_of_isaep_2018_275.pdf  |z Dokumentum-elérés