%0 Book part %A Dobó Dorina G. %D 2016 %G No linguistic content %B Proceedings of the International Symposium on Analytical and Environmental Problems %@ 978-963-306-507-5 %T Study of 1.8 NM Pt nanoparticles anchored on different amorphous silica supports in ethanol decomposition reaction %U http://acta.bibl.u-szeged.hu/56116/1/proceedings_of_isaep_2016_346-347.pdf %X 1.8 nm Pt nanoparticles with narrow size distribution were anchored on mostly identical, amorphous silica supports (SBA-15 [1], MCF-17 [2], Silica Foam [3]) and were tested in ethanol decomposition reactions at < 573 K. The reaction on the Pt/SF (0.117 molecules·site-1 ·s-1 ) was ~2 times faster compared to Pt/MCF-17 (0.055 molecules·site-1 ·s-1 ) and Pt/SBA-15 (0.063 molecules·site-1 ·s-1 ) at 573 K. In the case of Pt/SBA-15, selectivity towards acetaldehyde was ~4 times higher (68%) compared to the Pt/MCF-17 (18%) and Pt/SF (16%) catalysts. In the case of Pt/MCF-17 and Pt/SF, the methane to acetaldehyde ratio was 0.27 and 0.24, respectively, while it was ~ 10 times higher (1.97) for Pt/SBA-15 catalyst. The ethene selectivity was ~2 times higher in the case of Pt/MCF-17 (0.99%) and Pt/SF (0.93%) compared to Pt/SBA-15 (0.41%). Pt/MCF17 and Pt/SBA-15 produces ~ 50% more hydrogen (~27%) compared to Pt/SF catalyst (21 %). Small Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM) studies showed striking differences in the porosity, pore- and mesostructure, sintering and Pt-SiO2 interface altering effect of the silica supports as well as the Pt nanoparticles decorated catalysts which may have significant effect on the catalytic activity.