A Perron type theorem for positive solutions of functional differential equations

A nonlinear perturbation of a linear autonomous retarded functional differential equation is considered. According to a Perron type theorem, with the possible exception of small solutions the Lyapunov exponents of the solutions of the perturbed equation coincide with the real parts of the characteri...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Pituk Mihály
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 3 No. 57
Kulcsszavak:Differenciálegyenlet, Perron tétel
Online Access:http://acta.bibl.u-szeged.hu/55727
LEADER 01548nas a2200193 i 4500
001 acta55727
005 20211112102811.0
008 181107s2018 hu o 0|| zxx d
022 |a 1417-3875 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Pituk Mihály 
245 1 2 |a A Perron type theorem for positive solutions of functional differential equations  |h [elektronikus dokumentum] /  |c  Pituk Mihály 
260 |c 2018 
300 |a 1-11 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 3 No. 57 
520 3 |a A nonlinear perturbation of a linear autonomous retarded functional differential equation is considered. According to a Perron type theorem, with the possible exception of small solutions the Lyapunov exponents of the solutions of the perturbed equation coincide with the real parts of the characteristic roots of the linear part. In this paper, we study those solutions which are positive in the sense that they lie in a given order cone in the phase space. The main result shows that if the Lyapunov exponent of a positive solution of the perturbed equation is finite, then it is a characteristic root of the unperturbed equation with a positive eigenfunction. As a corollary, a necessary and sufficient condition for the existence of a positive solution of a linear autonomous delay differential equation is obtained. 
695 |a Differenciálegyenlet, Perron tétel 
856 4 0 |u http://acta.bibl.u-szeged.hu/55727/1/ejqtde_2018_057.pdf  |z Dokumentum-elérés