Minimal positive solutions for systems of semilinear elliptic equations

The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and su...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Orpel Aleksandra
Dokumentumtípus: Folyóirat
Megjelent: 2017
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Matematika, Differenciálegyenlet
doi:10.14232/ejqtde.2017.1.39

Online Access:http://acta.bibl.u-szeged.hu/47703
LEADER 01070nas a2200205 i 4500
001 acta47703
005 20200729123904.0
008 170620s2017 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2017.1.39  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Orpel Aleksandra 
245 1 0 |a Minimal positive solutions for systems of semilinear elliptic equations  |h [elektronikus dokumentum] /  |c  Orpel Aleksandra 
260 |c 2017 
300 |a 1-13 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and superlinear problems. 
695 |a Matematika, Differenciálegyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/47703/1/ejqtde_2017_039_001-013.pdf  |z Dokumentum-elérés