Minimal positive solutions for systems of semilinear elliptic equations

The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and su...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Orpel Aleksandra
Dokumentumtípus: Folyóirat
Megjelent: 2017
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Matematika, Differenciálegyenlet
doi:10.14232/ejqtde.2017.1.39

Online Access:http://acta.bibl.u-szeged.hu/47703
Leíró adatok
Tartalmi kivonat:The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and superlinear problems.
Terjedelem/Fizikai jellemzők:1-13
ISSN:1417-3875