On nonpermutational transformation semigroups with an application to syntactic complexity
We give an upper bound of n((n-1)!-(n-3)!) for the possible largest size of a subsemigroup of the full transformational semigroup over n elements consisting only of nonpermutational transformations. As an application we gain the same upper bound for the syntactic complexity of (generalized) definite...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | Acta cybernetica
22 No. 3 |
Kulcsszavak: | Programozás - szintaxis |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.3.2016.9 |
Online Access: | http://acta.bibl.u-szeged.hu/40270 |
Tartalmi kivonat: | We give an upper bound of n((n-1)!-(n-3)!) for the possible largest size of a subsemigroup of the full transformational semigroup over n elements consisting only of nonpermutational transformations. As an application we gain the same upper bound for the syntactic complexity of (generalized) definite languages as well. |
---|---|
Terjedelem/Fizikai jellemzők: | 687-701 |
ISSN: | 0324-721X |