Joint optimization of spectro-temporal features and deep neural nets for robust automatic speech recognition

In speech recognition, feature extraction and acoustical model training are traditionally done in two separate steps. Here, instead, we use a framework that combines spectro-temporal feature extraction and the training of neural network based acoustic models into a single process. We found earlier t...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kovács György
Tóth László
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:Acta cybernetica 22 No. 1
Kulcsszavak:Számítógép alkalmazása - beszédfelismerés
Tárgyszavak:
doi:10.14232/actacyb.22.1.2015.8

Online Access:http://acta.bibl.u-szeged.hu/36260
LEADER 01910nab a2200241 i 4500
001 acta36260
005 20220620105219.0
008 161017s2015 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.22.1.2015.8  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kovács György 
245 1 0 |a Joint optimization of spectro-temporal features and deep neural nets for robust automatic speech recognition  |h [elektronikus dokumentum] /  |c  Kovács György 
260 |c 2015 
300 |a 117-134 
490 0 |a Acta cybernetica  |v 22 No. 1 
520 3 |a In speech recognition, feature extraction and acoustical model training are traditionally done in two separate steps. Here, instead, we use a framework that combines spectro-temporal feature extraction and the training of neural network based acoustic models into a single process. We found earlier that this approach can be successfully applied for the recognition of speech. In this paper, we propose two further improvements to our method based on recent advances in neural net technology and extend our evaluation to speech contaminated with new types of noise. By repeating our experiments on TIMIT phone recognition tasks using clean and noise contaminated speech, we can compare the recognition performance of the original framework with our new, modified framework. The results indicate that both these modifications significantly improve the recognition performance of our framework. Moreover, we will show that these modifications allow us to achieve a substantially better performance than what we got earlier. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítógép alkalmazása - beszédfelismerés 
700 0 1 |a Tóth László  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/36260/1/actacyb_22_1_2015_8.pdf  |z Dokumentum-elérés