Asymptotic approximation for the quotient complexities of atoms

In a series of papers, Brzozowski together with Tamm, Davies, and Szykuła studied the quotient complexities of atoms of regular languages [6, 7, 3, 4]. The authors obtained precise bounds in terms of binomial sums for the most complex situations in the following five cases: (G): general, (R): right...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Diekert Volker
Walter Tobias
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:Acta cybernetica 22 No. 2
Kulcsszavak:Reakcióképesség - kémiai
Tárgyszavak:
doi:10.14232/actacyb.22.2.2015.7

Online Access:http://acta.bibl.u-szeged.hu/36117
LEADER 02082nab a2200241 i 4500
001 acta36117
005 20220620095555.0
008 161017s2015 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.22.2.2015.7  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Diekert Volker 
245 1 0 |a Asymptotic approximation for the quotient complexities of atoms  |h [elektronikus dokumentum] /  |c  Diekert Volker 
260 |c 2015 
300 |a 349-357 
490 0 |a Acta cybernetica  |v 22 No. 2 
520 3 |a In a series of papers, Brzozowski together with Tamm, Davies, and Szykuła studied the quotient complexities of atoms of regular languages [6, 7, 3, 4]. The authors obtained precise bounds in terms of binomial sums for the most complex situations in the following five cases: (G): general, (R): right ideals, (L): left ideals, (T): two-sided ideals and (S): suffix-free languages. In each case let κc(n) be the maximal complexity of an atom of a regular language L, where L has complexity n ≥ 2 and belongs to the class C ϵ {G, R, L, T , S}. It is known that κT(n) ≤ κL(n) = κR(n) ≤ κG(n) < 3n and κS(n) = κL(n−1). We show that the ratio κC(n)/κC(n−1) tends exponentially fast to 3 in all five cases but it remains different from 3. This behaviour was suggested by experimental results of Brzozowski and Tamm; and the result for G was shown independently by Luke Schaeffer and the first author soon after the paper of Brzozowski and Tamm appeared in 2012. However, proofs for the asymptotic behavior of κG(n)/κG(n−1) were never published; and the results here are valid for all five classes above. Moreover, there is an interesting oscillation for all C: for almost all n we have κC(n)/κC(n−1) > 3 if and only if κC(n+1)/κC(n) < 3. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Reakcióképesség - kémiai 
700 0 1 |a Walter Tobias  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/36117/1/actacyb_22_2_2015_7.pdf  |z Dokumentum-elérés