Asymptotic approximation for the quotient complexities of atoms
In a series of papers, Brzozowski together with Tamm, Davies, and Szykuła studied the quotient complexities of atoms of regular languages [6, 7, 3, 4]. The authors obtained precise bounds in terms of binomial sums for the most complex situations in the following five cases: (G): general, (R): right...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2015
|
Sorozat: | Acta cybernetica
22 No. 2 |
Kulcsszavak: | Reakcióképesség - kémiai |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.2.2015.7 |
Online Access: | http://acta.bibl.u-szeged.hu/36117 |
LEADER | 02082nab a2200241 i 4500 | ||
---|---|---|---|
001 | acta36117 | ||
005 | 20220620095555.0 | ||
008 | 161017s2015 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
024 | 7 | |a 10.14232/actacyb.22.2.2015.7 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Diekert Volker | |
245 | 1 | 0 | |a Asymptotic approximation for the quotient complexities of atoms |h [elektronikus dokumentum] / |c Diekert Volker |
260 | |c 2015 | ||
300 | |a 349-357 | ||
490 | 0 | |a Acta cybernetica |v 22 No. 2 | |
520 | 3 | |a In a series of papers, Brzozowski together with Tamm, Davies, and Szykuła studied the quotient complexities of atoms of regular languages [6, 7, 3, 4]. The authors obtained precise bounds in terms of binomial sums for the most complex situations in the following five cases: (G): general, (R): right ideals, (L): left ideals, (T): two-sided ideals and (S): suffix-free languages. In each case let κc(n) be the maximal complexity of an atom of a regular language L, where L has complexity n ≥ 2 and belongs to the class C ϵ {G, R, L, T , S}. It is known that κT(n) ≤ κL(n) = κR(n) ≤ κG(n) < 3n and κS(n) = κL(n−1). We show that the ratio κC(n)/κC(n−1) tends exponentially fast to 3 in all five cases but it remains different from 3. This behaviour was suggested by experimental results of Brzozowski and Tamm; and the result for G was shown independently by Luke Schaeffer and the first author soon after the paper of Brzozowski and Tamm appeared in 2012. However, proofs for the asymptotic behavior of κG(n)/κG(n−1) were never published; and the results here are valid for all five classes above. Moreover, there is an interesting oscillation for all C: for almost all n we have κC(n)/κC(n−1) > 3 if and only if κC(n+1)/κC(n) < 3. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Reakcióképesség - kémiai | ||
700 | 0 | 1 | |a Walter Tobias |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/36117/1/actacyb_22_2_2015_7.pdf |z Dokumentum-elérés |