Realizing small tournaments through few permutations
Every tournament on 7 vertices is the majority relation of a 3-permutation profile, and there exist tournaments on 8 vertices that do not have this property. Furthermore every tournament on 8 or 9 vertices is the majority relation of a 5-permutation profile.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2013
|
Sorozat: | Acta cybernetica
21 No. 2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
doi: | 10.14232/actacyb.21.2.2013.4 |
Online Access: | http://acta.bibl.u-szeged.hu/32898 |
LEADER | 01123nab a2200253 i 4500 | ||
---|---|---|---|
001 | acta32898 | ||
005 | 20220617151824.0 | ||
008 | 161017s2013 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
024 | 7 | |a 10.14232/actacyb.21.2.2013.4 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Eggermont Christian | |
245 | 1 | 0 | |a Realizing small tournaments through few permutations |h [elektronikus dokumentum] / |c Eggermont Christian |
260 | |c 2013 | ||
300 | |a 267-271 | ||
490 | 0 | |a Acta cybernetica |v 21 No. 2 | |
520 | 3 | |a Every tournament on 7 vertices is the majority relation of a 3-permutation profile, and there exist tournaments on 8 vertices that do not have this property. Furthermore every tournament on 8 or 9 vertices is the majority relation of a 5-permutation profile. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
700 | 0 | 1 | |a Hurkens Cor |e aut |
700 | 0 | 1 | |a Woeginger Gerhard J. |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/32898/1/actacyb_21_2_2013_4.pdf |z Dokumentum-elérés |