On monogenic nondeterministic automata
A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this pa...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2008
|
Sorozat: | Acta cybernetica
18 No. 4 |
Kulcsszavak: | Számítástechnika, Kibernetika, Automaták |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12846 |
LEADER | 01213nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12846 | ||
005 | 20220616145914.0 | ||
008 | 161015s2008 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Imreh Csanád | |
245 | 1 | 3 | |a On monogenic nondeterministic automata |h [elektronikus dokumentum] / |c Imreh Csanád |
260 | |c 2008 | ||
300 | |a 777-782 | ||
490 | 0 | |a Acta cybernetica |v 18 No. 4 | |
520 | 3 | |a A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways, three such notions, D1-, D2-, and D3-directability, are used. In this paper, we consider monogenic n.d. automata, and for each i = 1,2,3, we present sharp bounds for the maximal lengths of the shortest Di-directing words. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika, Automaták | ||
700 | 0 | 1 | |a Ito Masami |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12846/1/Imreh_2008_ActaCybernetica.pdf |z Dokumentum-elérés |