On a class of discrete functions
We consider classes of functions which depend in a certain way on their variables. The relation between the number of H-functions of n variables of the k-valued logic and the number of n-dimensional Latin hypercubes of order k is found. We have shown how from an arbitrary Latin hypercube we can &quo...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2006
|
Sorozat: | Acta cybernetica
17 No. 3 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12779 |
LEADER | 01228nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta12779 | ||
005 | 20220616094224.0 | ||
008 | 161015s2006 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Kovačev Dimiter Stoičkov | |
245 | 1 | 3 | |a On a class of discrete functions |h [elektronikus dokumentum] / |c Kovačev Dimiter Stoičkov |
260 | |c 2006 | ||
300 | |a 513-519 | ||
490 | 0 | |a Acta cybernetica |v 17 No. 3 | |
520 | 3 | |a We consider classes of functions which depend in a certain way on their variables. The relation between the number of H-functions of n variables of the k-valued logic and the number of n-dimensional Latin hypercubes of order k is found. We have shown how from an arbitrary Latin hypercube we can "construct" (present in table form) an H-function and vice versa - how every H-function can be represented as a Latin hypercube. We extend the concepts of H-function and Latin hypercube. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12779/1/cybernetica_017_numb_003_513-519.pdf |z Dokumentum-elérés |