Classification using a sparse combination of basis functions

Combinations of basis functions are applied here to generate and solve a convex reformulation of several well-known machine learning algorithms like certain variants of boosting methods and Support Vector Machines. We call such a reformulation a Convex Networks (CN) approach. The nonlinear Gauss-Sei...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kovács Kornél
Kocsor András
Testületi szerző: Conference for PhD Students in Computer Science (4.) (2004) (Szeged)
Dokumentumtípus: Cikk
Megjelent: 2005
Sorozat:Acta cybernetica 17 No. 2
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12768
LEADER 01748nab a2200241 i 4500
001 acta12768
005 20220615122343.0
008 161015s2005 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kovács Kornél 
245 1 0 |a Classification using a sparse combination of basis functions  |h [elektronikus dokumentum] /  |c  Kovács Kornél 
260 |c 2005 
300 |a 311-323 
490 0 |a Acta cybernetica  |v 17 No. 2 
520 3 |a Combinations of basis functions are applied here to generate and solve a convex reformulation of several well-known machine learning algorithms like certain variants of boosting methods and Support Vector Machines. We call such a reformulation a Convex Networks (CN) approach. The nonlinear Gauss-Seidel iteration process for solving the CN problem converges globally and fast as we prove. A major property of CN solution is the sparsity, the number of basis functions with nonzero coefficients. The sparsity of the method can effectively be controlled by heuristics where our techniques are inspired by the methods from linear algebra. Numerical results and comparisons demonstrate the effectiveness of the proposed methods on publicly available datasets. As a consequence, the CN approach can perform learning tasks using far fewer basis functions and generate sparse solutions. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Kocsor András  |e aut 
710 |a Conference for PhD Students in Computer Science (4.) (2004) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/12768/1/Kovacs_2005_ActaCybernetica.pdf  |z Dokumentum-elérés