On-line maximizing the number of items packed in variable-sized bins

We study an on-line bin packing problem. A fixed number n of bins, possibly of different sizes, are given. The items arrive on-line, and the goal is to pack as many items as possible. It is known that there exists a legal packing of the whole sequence in the n bins. We consider fair algorithms that...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Epstein Leah
Favrholdt Lene M.
Dokumentumtípus: Cikk
Megjelent: 2003
Sorozat:Acta cybernetica 16 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12709
LEADER 01351nab a2200229 i 4500
001 acta12709
005 20220614151711.0
008 161015s2003 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Epstein Leah 
245 1 0 |a On-line maximizing the number of items packed in variable-sized bins  |h [elektronikus dokumentum] /  |c  Epstein Leah 
260 |c 2003 
300 |a 57-66 
490 0 |a Acta cybernetica  |v 16 No. 1 
520 3 |a We study an on-line bin packing problem. A fixed number n of bins, possibly of different sizes, are given. The items arrive on-line, and the goal is to pack as many items as possible. It is known that there exists a legal packing of the whole sequence in the n bins. We consider fair algorithms that reject an item, only if it does not fit in the empty space of any bin. We show that the competitive ratio of any fair, deterministic algorithm lies between 1/2 and 2/3 and that a class of algorithms including Best-Fit has a competitive ratio of exactly n/2n-1. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Favrholdt Lene M.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/12709/1/cybernetica_016_numb_001_057-066.pdf  |z Dokumentum-elérés