On variable sized vector packing

One of the open problems in on-line packing is the gap between the lower bound Ω(l) and the upper bound O(d) for vector packing of d-dimensional items into d-dimensional bins. We address a more general packing problem with variable sized bins. In this problem, the set of allowed bins contains the tr...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Epstein Leah
Dokumentumtípus: Cikk
Megjelent: 2003
Sorozat:Acta cybernetica 16 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12708
LEADER 01587nab a2200217 i 4500
001 acta12708
005 20220614151512.0
008 161015s2003 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Epstein Leah 
245 1 3 |a On variable sized vector packing  |h [elektronikus dokumentum] /  |c  Epstein Leah 
260 |c 2003 
300 |a 47-56 
490 0 |a Acta cybernetica  |v 16 No. 1 
520 3 |a One of the open problems in on-line packing is the gap between the lower bound Ω(l) and the upper bound O(d) for vector packing of d-dimensional items into d-dimensional bins. We address a more general packing problem with variable sized bins. In this problem, the set of allowed bins contains the traditional "all-1" vector, but also a finite number of other d-dimensional vectors. The study of this problem can be seen as a first step towards solving the classical problem. It is not hard to see that a simple greedy algorithm achieves competitive ratio O(d) for every set of bins. We show that for all small ε > 0 there exists a set of bins for which the competitive ratio is 1 + ε. On the other hand we show that there exists a set of bins for which every deterministic or randomized algorithm has competitive ratio Ω(d). We also study one special case for d = 2. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
856 4 0 |u http://acta.bibl.u-szeged.hu/12708/1/cybernetica_016_numb_001_047-056.pdf  |z Dokumentum-elérés