Logical definability of Y-tree and trellis systolic ω-languages
In this paper we investigate the correspondence (in the style of the well known Büchi Theorem) between ω-languages accepted by systolic automata and suitable (proper) extensions of the Monadic Second Order theory of one successor (MSO[<]). To this purpose we extend Y-tree and trellis systolic aut...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2001
|
Sorozat: | Acta cybernetica
15 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12663 |
LEADER | 01421nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12663 | ||
005 | 20220614114616.0 | ||
008 | 161015s2001 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Angelo Monti | |
245 | 1 | 0 | |a Logical definability of Y-tree and trellis systolic ω-languages |h [elektronikus dokumentum] / |c Angelo Monti |
260 | |c 2001 | ||
300 | |a 75-100 | ||
490 | 0 | |a Acta cybernetica |v 15 No. 1 | |
520 | 3 | |a In this paper we investigate the correspondence (in the style of the well known Büchi Theorem) between ω-languages accepted by systolic automata and suitable (proper) extensions of the Monadic Second Order theory of one successor (MSO[<]). To this purpose we extend Y-tree and trellis systolic automata to deal with ω-words and we study the expressiveness, closure and decidability properties of the two classes of ω-languages accepted by Y-tree and trellis automata, respectively. We define, then, two extensions of MSO[<], MSO[<,adj] and MSO[<,2x], which allow to express Y-tree ω-languages and trellis ω-languages, respectively. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
700 | 0 | 1 | |a Peron Adriano |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12663/1/cybernetica_015_numb_001_075-100.pdf |z Dokumentum-elérés |