Logical definability of Y-tree and trellis systolic ω-languages

In this paper we investigate the correspondence (in the style of the well known Büchi Theorem) between ω-languages accepted by systolic automata and suitable (proper) extensions of the Monadic Second Order theory of one successor (MSO[<]). To this purpose we extend Y-tree and trellis systolic aut...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Angelo Monti
Peron Adriano
Dokumentumtípus: Cikk
Megjelent: 2001
Sorozat:Acta cybernetica 15 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12663
LEADER 01421nab a2200229 i 4500
001 acta12663
005 20220614114616.0
008 161015s2001 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Angelo Monti 
245 1 0 |a Logical definability of Y-tree and trellis systolic ω-languages  |h [elektronikus dokumentum] /  |c  Angelo Monti 
260 |c 2001 
300 |a 75-100 
490 0 |a Acta cybernetica  |v 15 No. 1 
520 3 |a In this paper we investigate the correspondence (in the style of the well known Büchi Theorem) between ω-languages accepted by systolic automata and suitable (proper) extensions of the Monadic Second Order theory of one successor (MSO[<]). To this purpose we extend Y-tree and trellis systolic automata to deal with ω-words and we study the expressiveness, closure and decidability properties of the two classes of ω-languages accepted by Y-tree and trellis automata, respectively. We define, then, two extensions of MSO[<], MSO[<,adj] and MSO[<,2x], which allow to express Y-tree ω-languages and trellis ω-languages, respectively. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Peron Adriano  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/12663/1/cybernetica_015_numb_001_075-100.pdf  |z Dokumentum-elérés