On Kleene algebras of ternary co-relations

In this paper we investigate identities satisfied by a class of algebras made of ternary co-relations - contravariant ("arrow-reversed") analogues of binary relations. These algebras are equipped with the operations of union, co-relational composition, iteration, converse and the empty co...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Dolinka Igor
Dokumentumtípus: Cikk
Megjelent: 2000
Sorozat:Acta cybernetica 14 No. 4
Kulcsszavak:Számítástechnika, Algebra
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12651
LEADER 01797nab a2200229 i 4500
001 acta12651
005 20220614104654.0
008 161015s2000 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Dolinka Igor 
245 1 3 |a On Kleene algebras of ternary co-relations  |h [elektronikus dokumentum] /  |c  Dolinka Igor 
260 |c 2000 
300 |a 583-595 
490 0 |a Acta cybernetica  |v 14 No. 4 
520 3 |a In this paper we investigate identities satisfied by a class of algebras made of ternary co-relations - contravariant ("arrow-reversed") analogues of binary relations. These algebras are equipped with the operations of union, co-relational composition, iteration, converse and the empty co-relation and the so-called diagonal co-relation as constants. Our first result is that the converse-free part of the corresponding equational theory consists precisely of Kleenean equations for relations, or, equivalently, for (regular) languages. However, the rest of the equations, involving the symbol of the converse, are relatively axiomatized by involution axioms only, so that the co-relational converse behaves more like the reversal of languages, rather than the relational converse. Actually, the language reversal is explicitely used to prove this result. Therefore, we conclude that co-relations can offer a better framework than relations for the mathematical modeling of formal languages, as well as many other notions from computer science. 
650 4 |a Természettudományok 
650 4 |a Matematika 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Algebra 
856 4 0 |u http://acta.bibl.u-szeged.hu/12651/1/cybernetica_014_numb_004_583-595.pdf  |z Dokumentum-elérés