Pseudo-hamiltonian graphs

A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1....

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Babel Luitpold
Woeginger Gerhard J.
Dokumentumtípus: Cikk
Megjelent: 2000
Sorozat:Acta cybernetica 14 No. 4
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12649
LEADER 01622nab a2200241 i 4500
001 acta12649
005 20220614102304.0
008 161015s2000 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Babel Luitpold 
245 1 0 |a Pseudo-hamiltonian graphs  |h [elektronikus dokumentum] /  |c  Babel Luitpold 
260 |c 2000 
300 |a 553-567 
490 0 |a Acta cybernetica  |v 14 No. 4 
520 3 |a A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1. Surprisingly, deciding whether there exists an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in polynomial time. We also present sufficient conditions for pseudo-h-hamiltonicity that axe based on stable sets and on toughness. Moreover, we investigate the computational complexity of finding pseudo-h-hamiltonian cycles on special graph classes like bipartite graphs, split graphs, planar graphs, cocomparability graphs; in doing this, we establish a precise separating line between easy and difficult cases of this problem. 
650 4 |a Természettudományok 
650 4 |a Matematika 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Woeginger Gerhard J.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/12649/1/cybernetica_014_numb_004_553-567.pdf  |z Dokumentum-elérés