Remarks on the interval number of graphs
The interval number of a graph G is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we propose a family of representations for the graph G, which yield the well-known upper bound [1)] , where d is the maximum degree of...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1995
|
Sorozat: | Acta cybernetica
12 No. 2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12549 |
LEADER | 01179nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta12549 | ||
005 | 20220613133937.0 | ||
008 | 161015s1995 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Pluhár András | |
245 | 1 | 0 | |a Remarks on the interval number of graphs |h [elektronikus dokumentum] / |c Pluhár András |
260 | |c 1995 | ||
300 | |a 125-129 | ||
490 | 0 | |a Acta cybernetica |v 12 No. 2 | |
520 | 3 | |a The interval number of a graph G is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we propose a family of representations for the graph G, which yield the well-known upper bound [1)] , where d is the maximum degree of G. The extremal graphs for even d are also described, and the upper bound on the interval number in terms of the number of edges of G is improved. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12549/1/cybernetica_012_numb_002_125-129.pdf |z Dokumentum-elérés |