Free submonoids and minimal ω-generators of Rω
Let A be an alphabet and let R be a language in A+. An (¿-generator of -R" is a language G such that G" = R". The language Stab(-R") = {u G A* : ttiZ" Ç R"} is a submonoid of A*. We give results concerning the wgenerators for the case when Stab(Ru ) is a free submonoid...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1991
|
Sorozat: | Acta cybernetica
10 No. 1-2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12491 |
LEADER | 01382nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta12491 | ||
005 | 20220613081254.0 | ||
008 | 161015s1991 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Litovsky Igor | |
245 | 1 | 0 | |a Free submonoids and minimal ω-generators of Rω |h [elektronikus dokumentum] / |c Litovsky Igor |
260 | |c 1991 | ||
300 | |a 35-43 | ||
490 | 0 | |a Acta cybernetica |v 10 No. 1-2 | |
520 | 3 | |a Let A be an alphabet and let R be a language in A+. An (¿-generator of -R" is a language G such that G" = R". The language Stab(-R") = {u G A* : ttiZ" Ç R"} is a submonoid of A*. We give results concerning the wgenerators for the case when Stab(Ru ) is a free submonoid which are not available in the general case. In particular, we prove that every ((»-generator of 22" contains at least one minimal w-generator of R". Furthermore these minimal w-generators are codes. We also characterize the w-languagea having only finite languages as minimal u-generators. Finally, we characterize the w- languages »-generated by finite prefix codes. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12491/1/cybernetica_010_numb_001_002_035-043.pdf |z Dokumentum-elérés |